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Abstract
Running is a bouncing gait in which the body mass center slows and lowers during the first half of
the stance phase; the mass center is then accelerated forward and upward into flight during the
second half of the stance phase. Muscle-driven simulations can be analyzed to determine how
muscle forces accelerate the body mass center. However, muscle-driven simulations of running at
different speeds have not been previously developed, and it remains unclear how muscle forces
modulate mass center accelerations at different running speeds. Thus, to examine how muscles
generate accelerations of the body mass center, we created three-dimensional muscle-driven
simulations of ten subjects running at 2.0, 3.0, 4.0, and 5.0 m/s. An induced acceleration analysis
determined the contribution of each muscle to mass center accelerations. Our simulations included
arms, allowing us to investigate the contributions of arm motion to running dynamics. Analysis of
the simulations revealed that soleus provides the greatest upward mass center acceleration at all
running speeds; soleus generates a peak upward acceleration of 19.8 m/s2 (i.e., the equivalent of
approximately 2.0 bodyweights of ground reaction force) at 5.0 m/s. Soleus also provided the
greatest contribution to forward mass center acceleration, which increased from 2.5 m/s2 at 2.0 m/
s to 4.0 m/s2 at 5.0 m/s. At faster running speeds, greater velocity of the legs produced larger
angular momentum about the vertical axis passing through the body mass center; angular
momentum about this vertical axis from arm swing simultaneously increased to counterbalance
the legs. We provide open-access to data and simulations from this study for further analysis in
OpenSim at simtk.org/home/nmbl_running, enabling muscle actions during running to be studied
in unprecedented detail.

Introduction
As runners increase their speed, the magnitude of forces acting on their bodies increases.
Researchers have observed changes in ground reaction forces, joint moments, muscle
activities, leg stiffness, and body segment motions at different running speeds (e.g.,
Cappellini et al., 2006; Cavagna et al., 1976; McClay, 1990; McMahon and Cheng, 1990;
Novacheck, 1998; Schache et al., 2011; Winter, 1983). Analysis of body segment motions

© 2012 Elsevier Ltd. All rights reserved.

Please direct correspondence to: Scott L. Delp, Ph.D. Clark Center, Room S-321 Stanford University, Mail Code 5450 318 Campus
Drive, Stanford CA 94305-5450 USA Phone: +1 (650) 723-1230 Fax: +1 (650) 723-8544 delp@stanford.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflicts of interest
None of the authors had any financial or personal conflict of interest with regard to this study.

NIH Public Access
Author Manuscript
J Biomech. Author manuscript; available in PMC 2014 April 08.

Published in final edited form as:
J Biomech. 2013 February 22; 46(4): 780–787. doi:10.1016/j.jbiomech.2012.11.024.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://simtk.org/home/nmbl_running


and ground reaction forces during running has revealed that runners increase their forward
speed by increasing their stride length and stride frequency (Cavagna et al., 1988;
Hildebrand, 1960). At running speeds between 2-7 m/s, runners increase their stride length
by generating larger ground reaction forces (Derrick et al., 1998; Mercer et al., 2005;
Weyand et al., 2000). These experimental studies have characterized the larger ground
reaction forces runners produce as they run faster, yet it remains unclear which muscles
contribute to the production of larger ground reaction forces as running speed increases.

Musculoskeletal simulations enable examination of how muscles produce ground reaction
forces. Muscles generate forces that are transmitted by bones and connective tissue to other
body segments, causing the foot to apply a force to the ground. The ground applies an equal
and opposite reaction force to each foot, which accelerates the mass center forward (i.e.,
propulsion), backward (i.e., braking), and upward (i.e., support). The mass center
acceleration is equal to the ground reaction force divided by the subject’s total body mass
(Winter, 1990). Sasaki and Neptune (2006) used two-dimensional simulations to highlight a
change in soleus function at the walk-run transition speed. Besier et al. (2009) estimated
muscle forces during running with an electromyography-driven musculoskeletal model to
characterize quadriceps forces in subjects with patellafemoral pain. Dorn et al. (2012)
estimated muscle forces during running and sprinting using static optimization, and
calculated muscle contributions to vertical mass center and hip accelerations. However,
static optimization excludes effects of activation dynamics and tendon compliance on
muscle force production. Achilles tendon compliance decreases metabolic cost during
running (Alexander and Bennet-Clark, 1977) and affects muscle fiber lengths, fiber
velocities, and force generation during running (Biewener and Roberts, 2000; Farris and
Sawicki, 2012).

We previously developed a three-dimensional muscle-driven simulation of a single subject
running at approximately 4 m/s that included activation dynamics and tendon compliance
(Hamner et al., 2010). Analysis of that simulation revealed that quadriceps and
plantarflexors are major contributors to mass center acceleration at this running speed. We
observed that arm motion effectively counterbalanced angular momentum about the vertical
axis passing through the body mass center from leg swing, but had little effect on mass
center accelerations. In this study, we extend upon our previous work by developing and
analyzing muscle-driven simulations of multiple subjects running over a range of speeds.

Our goal was to examine how muscle forces and arm swing affect dynamics of the body at
different running speeds. Specifically, we sought to determine how muscle forces contribute
to mass center accelerations during the stance phase of running, and how the arms act to
counterbalance motion of the legs at different running speeds. We achieved this goal by
creating and analyzing muscle-driven dynamic simulations of ten subjects running at
different speeds. As the simulations are based on experimental data, we also report measured
joint angles, joint moments, and ground reaction forces that occurred during running at
different speeds.

Methods
We measured motions, forces, and electromyography (EMG) patterns of ten subjects
running on a treadmill at four speeds: 2.0, 3.0, 4.0, and 5.0 m/s and used these data to create
muscle-driven simulations of each subject at each speed. The simulations were analyzed to
determine muscle contributions to vertical, backward, and forward mass center accelerations
during the stance phase. Subjects were all male with an average age, height, and mass of 29
± 5 years, 1.77 ± 0.04 m, and 70.9 ± 7.0 kg, respectively. Each subject was an experienced
long distance runner who reported running at least 50 km / week. Seven subjects were
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consistent midto-rearfoot strikers and three subjects were consistent forefoot strikers at all
running speeds examined in this study, except one forefoot striking subject who landed on
his rearfoot while running at 2 m/s. The Stanford University Institutional Review Board
approved the experimental protocol and subjects provided informed consent to participate.

Experimental Data
Marker trajectories and ground reaction forces and moments were collected as each subject
ran on a treadmill at different speeds. We placed 54 reflective markers on each subject and
collected a static calibration trial. Functional joint movements were measured to calculate
hip joint centers (Gamage and Lasenby, 2002). Marker positions were measured at 100 Hz
using eight Vicon MX40+ cameras. Ground reaction forces and moments were measured at
1000 Hz using a Bertec Corporation instrumented treadmill. Marker positions and ground
reaction forces were low pass filtered at 15 Hz with a zero-phase 4th order Butterworth filter
and critically damped filter (Robertson and Dowling, 2003), respectively.

EMG signals were recorded using a Delsys Bangoli System with surface electrodes placed
on 10 muscles: soleus, gastrocnemius lateralis, gastrocnemius medialis, tibialis anterior,
biceps femoris long head, vastus medialis, vastus lateralis, rectus femoris, gluteus maximus,
and gluteus medius. The raw EMG signal from each muscle was corrected for offset,
rectified, and low-pass filtered at 10 Hz with a zero-phase 2nd order Butterworth filter
(Buchanan et al., 2005). We then normalized the processed EMG signal from each muscle
by the maximum voltage recorded across all trials for each subject.

Musculoskeletal Simulations
Musculoskeletal simulations were generated using OpenSim (Delp et al., 2007). A 12
segment, 29 degree-of-freedom generic musculoskeletal model (Hamner et al., 2010) was
used to create the simulations (Fig. 1; Supplemental Movie 1). Lower extremity and back
joints were driven by 92 Hill-type musculotendon actuators (Anderson and Pandy, 1999;
Delp et al., 1990) and arms were driven by torque actuators. We scaled the generic model to
match each subject’s anthropometry based on experimentally measured markers placed on
anatomical landmarks and calculated hip joint centers. A virtual marker set was placed on
the model based on these anatomical landmarks. Joint angles were calculated using an
inverse kinematics algorithm that minimized the difference between experimentally
measured marker positions and corresponding virtual markers on the model at each time
frame. Joint moments were calculated using the residual reduction algorithm (RRA) (Delp et
al., 2007). RRA allows for small changes in joint angles (RMS change < 1.5°) and torso
mass center location (RMS change < 5 cm) to minimize residual forces and moments
applied to the pelvis (Kuo, 1998). Muscle excitations, activations, and forces needed to
generate those moments and track the measured motion were estimated with the computed
muscle control (CMC) algorithm (Thelen and Anderson, 2006; Thelen et al., 2003). CMC
estimates muscle forces by minimizing the sum of the square of muscle excitations while
accounting for muscle activation and contraction dynamics (Zajac, 1989). Constraints were
applied to the muscle excitations for gluteus medius, semimembranosus, biceps femoris long
head, vastus lateralis, gastrocnemius medialis, gastrocnemius lateralis, soleus, and tibialis
anterior so that they better matched EMG recordings.

To test the accuracy of the simulations, we compared simulated quantities to experimental
data. The simulations tracked measured kinematics with a maximum RMS deviation of 2.5°
for each joint angle over a gait cycle. Simulated muscle activations and experimental EMG
data showed similar features (Fig. 2), including strong activation during the stance phase of
soleus, gastrocnemius medialis, gastrocnemius lateralis, vasti lateralis, vasti medialis, biceps
femoris long head, gluteus maximus, and gluteus medius. There was a delay of
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approximately 75 ms between the processed EMG and simulated activations, consistent with
electromechanical delay observed between measured EMG and force production (Corcos et
al., 1992). Joint angles from inverse kinematics, joint moments from RRA, and
experimentally measured ground reaction forces were compared to averaged data from
previous studies (Cavanagh and Lafortune, 1980; Novacheck, 1998; Schache et al., 2011;
Swanson and Caldwell, 2000; Winter, 1983) (Supplemental Figure 1). Simulated muscle
forces were compared to results from a static optimization study (Dorn et al., 2012)
(Supplemental Figure 2). The peak residual forces applied to the simulations were less than
2% of body weight and the peak residual and reserve moments applied to each joint were
less than 0.05 Nm/kg (Supplemental Figure 3).

An induced acceleration analysis was used to determine the contribution of each muscle
force to vertical and fore-aft mass center accelerations. Each force in the simulation,
including muscle forces, gravity, and forces due to velocity effects, was applied in isolation
to calculate its contribution to the ground reaction force and mass center acceleration. Foot-
floor interaction was modeled with a rolling without slipping constraint (Hamner et al.,
2010). To test the accuracy of the analysis, we verified that the sum of accelerations due to
each force reasonably matched the measured total mass center acceleration (Supplemental
Figure 4).

Statistics
Data were averaged across three right-foot stance phases for each subject at each running
speed. Stance phase was normalized (from 0-100%) starting at foot strike and ending at toe-
off determined from the measured vertical ground reaction force. Peak total mass center
acceleration and muscle contributions to vertical, backward, and forward accelerations were
averaged across all subjects for each speed. To determine if running speed had an effect on
muscle contributions to mass center accelerations we performed a one-way repeated
measures ANOVA for each muscle. One-way repeated measures ANOVA were also
performed to determine if running speed had an effect on peak sagittal joint angles, peak
sagittal joint moments, peak ground reaction forces, stride length, and the timing of gait
events (i.e., toe-off, stride time, stance time, and flight time). We also performed the
Shapiro–Wilk test with a significance level of 0.05 to ensure the data were normally
distributed before performing the ANOVA. Effects of running speed were considered
significant when p < 0.01.

Results
Peak sagittal joint angles, sagittal joint moments, and ground reaction forces significantly
increased with running speed. Peak hip flexion, knee flexion, and ankle plantarflexion each
increased due to running speed, with increases of 24°, 43°, and 10°, respectively, from 2.0
m/s to 5.0 m/s (Fig. 3A). Peak joint moments generated by the hip extensors, knee extensors,
and ankle plantarflexors also increased due to running speed, with increases of 117%, 54%,
and 35%, respectively, from 2.0 m/s to 5.0 m/s (Fig. 3B). Peak knee extension and ankle
plantarflexion moments occurred near mid-stance, whereas the peak hip extension moment
occurred during late swing at all speeds.

Duration of the stance phase decreased by 0.11 seconds across running speeds and toe-off
took place earlier in the gait cycle at faster running speeds (Table 1). During the first half of
the stance phase, the mass center accelerated backward (i.e., braking phase), and during the
second half of stance the mass center accelerated forward (i.e., propulsion phase) (Fig. 4A).
Running speed had a significant effect on peak backward, forward, and upward mass center
accelerations. Peak forward ground reaction force increased from 0.13 bodyweights at 2.0
m/s to 0.34 bodyweights at 5.0 m/s, as vertical ground reaction force increased from 2.1
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bodyweights at 2.0 m/s to 2.6 bodyweights at 5.0 m/s (Fig. 3C). Peak vertical ground
reaction force occurred at 40% of the stance phase for 2.0 m/s and at 48% of stance for 5.0
m/s (Fig. 3C, vertical force).

Soleus was the largest contributor to upward mass center acceleration (Fig. 5A); with a peak
contribution at 5.0 m/s that was 77% of total peak upward acceleration. The large upward
mass center acceleration from soleus arose because the muscle force produced a large
vertical ground reaction force of approximately 2 bodyweights. Peak contributions from
soleus to upward mass center acceleration increased by 5.7 m/s2 across running speeds (Fig.
5A). Gastrocnemius, vasti, and gluteus maximus also contributed substantially to upward
acceleration. Contributions of vasti (Fig. 4E) and gluteus maximus (Fig. 4G) to upward mass
center acceleration peaked during the braking phase, whereas contribution of plantarflexors
(Fig. 4C-D) to upward acceleration peaked during the propulsion phase. In contrast, tibialis
anterior and the hamstrings contribute to a downward acceleration during stance (Fig. 4H-I)
by providing ankle dorsiflexion and knee flexion moments, respectively.

During the braking phase, the quadriceps muscle group (i.e., vasti and rectus femoris)
produced a large backward mass center acceleration (Fig. 5B); at 5.0 m /s, peak contribution
from quadriceps was 80% of total peak backward acceleration. This large backward mass
center acceleration from quadriceps arose because the muscle forces produced a backward
ground reaction force of approximately 0.3 bodyweights. Contributions from vasti to
backward mass center acceleration increased by 0.7 m/s2 across running speeds (Fig. 5B).
Tibialis anterior contributed about 20% of peak backward acceleration, and did not
significantly change with running speed.

During the propulsion phase, the ankle plantarflexors (i.e., gastrocnemius and soleus) were
the largest contributors to forward mass center acceleration (Fig. 5B), with a peak forward
acceleration at 5.0 m/s that was larger than the total peak forward mass center acceleration.
The contribution from plantarflexors to forward acceleration was greater than the total
forward mass center acceleration because quadriceps continued to accelerate the mass center
backward during the propulsion phase. Peak contributions from soleus to forward mass
center acceleration increased by 1.4 m/s2 across running speeds (Fig. 5B). The contribution
from gastrocnemius at 5.0 m/s was 35% of the peak forward acceleration, and increased by
0.7 m/s2 across speeds (Fig. 5B). Hamstrings and forces due to velocity effects (i.e.,
Corriolis and centripetal forces) also contributed to forward mass center acceleration and
each showed a significant change with speed.

While arms contributed little to mass center accelerations, we also observed that angular
momentum of the arms about a vertical axis passing through the center of mass
counterbalanced (i.e., was equal and opposite to) angular momentum of the lower
extremities (Fig. 6). Running speed had a significant effect on peak vertical angular
momentum of the arms and legs, each of which doubled, from about 1.5 kg·m2/s at 2.0 m/s
to 3.0 kg·m2/s at 5.0 m/s.

Discussion
Our goal was to determine how muscle forces and arm swing affect dynamics of the body at
different running speeds. Our analysis revealed that upward, backward, and forward mass
center accelerations were generated primarily by muscles of the stance limb. During the
early stance phase of the running gait cycle, the quadriceps muscle group was the largest
contributor to backward and upward mass center acceleration at each speed. During late
stance, the ankle plantarflexors (i.e., soleus and gastrocnemius) were the main contributors
to forward and upward mass center accelerations. We observed that running speed had a
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significant effect on upward and fore-aft mass center accelerations produced by soleus,
gastrocnemius, vasti, rectus femoris, hamstrings, gluteus maximus, and gluteus medius.

Soleus was the dominant contributor to upward and forward mass center accelerations at all
running speeds. Large mass center accelerations from soleus occur because the muscle
produces a large force and is a uniarticular ankle plantarflexor. Gastrocnemius, the other
major ankle plantarflexor, also crosses the knee and generates a knee flexion moment, which
reduces its capacity to accelerate the mass center upwards. Increased contributions to
upward and forward mass center accelerations by soleus enable longer flight times and
larger stride lengths (Table 1), providing a means of increasing running speed (Dorn et al.,
2012; Weyand et al., 2000). Thus, soleus plays an important role in increasing forward
running speed from 2-5 m/s by generating larger upward and forward mass center
accelerations.

At the fastest running speed in this study (5.0 m/s), soleus muscle fibers shortened with the
highest velocities of any muscle in the simulation during late stance (Supplemental Figure
5), which corresponds with increased excursion of the ankle (Fig. 3A) and decreased ground
contact time (Table 1). Diminishing force production due to high fiber velocities has been
suggested as a mechanism that limits running speed (Dorn et al., 2012; Miller et al., 2012a).
Since runners generate larger upward and forward mass center accelerations at faster
running speeds (Schache et al., 2012; Weyand et al., 2000), and soleus is the largest
contributor to these accelerations, limited force production from soleus due to its high
shortening velocity may therefore limit a runner’s speed. Muscle fiber length and velocity
are sensitive to tendon compliance (Biewener and Roberts, 2000) and parameters of the
force-velocity relationship, such as maximum fiber contractile velocity and shape of the
force-velocity curve (Miller et al., 2012b). Our work did not formally characterize
sensitivity of soleus force to these parameters but we expect that force production by soleus
to be particularly sensitive to fiber velocity since this muscle has a high fraction of slow
twitch muscle fibers (Edgerton et al., 1975). Future research of running performance should
characterize the relationship between muscle parameters and soleus force production and
compare simulation results with imaging studies (e.g., Farris and Sawicki, 2012; Lichtwark
et al., 2007) to verify fiber lengths and velocities.

To assess the accuracy of the simulations and gain confidence in the analysis results from
this study, we compared our simulated results to results from experimental studies that have
measured joint moments and muscle activity over a range of running speeds. Average hip
flexion, knee extension, and ankle plantarflexion moments generated by muscle forces
showed similar features to data from Schache et al. (2011), demonstrating a significant
increase in ankle plantarflexion moment with increased running speed. Muscle activity from
our simulations also showed similar features to EMG collected by Cappelini et al (2005),
including increased activations of the quadriceps during early stance and increased
activation of the plantarflexors during mid-to-late stance. These observed increases in joint
moments and muscle activity support our finding of increased contributions from the
quadriceps to backward and upward mass center accelerations during early stance and
increased contributions from the plantarflexors to forward and upward accelerations during
late stance.

Our previous simulation of running (Hamner et al., 2010) also showed that soleus and
gastrocnemius are large contributors to upward and forward mass center accelerations.
However, contributions from vasti to upward and backward accelerations in this study are
less than our previous results. The previous simulation was of one stride from a single
subject running at a single speed. During that stride, the subject decelerated over the stance
phase (i.e., the braking impulse was greater than the propulsive impulse) and generated a
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larger knee extension moment compared to average moments from this study. These
differences may have required a larger contribution from quadriceps in our previous
simulation. Our current study includes ten subjects running at four speeds with three strides
at each speed, for a total of 120 simulations. This larger set of data likely provides a more
accurate assessment of quadriceps actions.

We found that arms made negligible contributions to mass center accelerations at the
running speeds we studied, although arms may make larger contributions to forward and
vertical accelerations at faster running speeds. As previously observed, we found that the
arms counterbalanced the vertical angular momentum of the legs (Hamner et al., 2010;
Hinrichs, 1987), which may help to minimize rotation of the head and torso (Pontzer et al.,
2009).

This study was performed using an instrumented treadmill that measures ground reaction
forces. Slight differences have been observed in kinematics, kinetics, and EMG between
over ground and treadmill running (Nigg et al., 1995; Wank et al., 1998). However, motions
and ground reaction forces from treadmill running in this study are consistent with data from
over ground studies (Cavanagh and Lafortune, 1980; Novacheck, 1998; Schache et al.,
2011; Winter, 1983) (Supplemental Figure 1). Nigg et al. (1995) observed less difference in
kinematics and kinetics of experienced runners between over ground and treadmill running,
and this study examined only experienced runners. Additionally, we observed that muscle
forces calculated in this study are consistent with Dorn et al. (2012), who calculated muscle
forces using static optimization from over ground running data.

We analyzed the contributions of muscles to the ground reaction force and the resulting
accelerations of the body mass center. Additional analyses, such as determining how
muscles contribute to the flow of energy between body segments and joint accelerations,
may provide a more comprehensive view of muscle actions during running. The results of
any analysis depend on the musculoskeletal model (i.e., degrees of freedom, inertial
parameters of body segments, muscle geometry, musculotendon parameters, etc.), the
ground contact model, and the simulated muscle forces. We compared our simulated results
to experimental measurements when possible (e.g., Figure 2, Supplemental Figures 1-2,
6-8), and we verified that the sum of accelerations produced by all of the forces in the
simulation was similar to the measured mass center acceleration (Supplemental Figure 4).
However, not all of the simulation results can be verified experimentally.

Musculoskeletal simulations provide a framework to examine quantities that are generally
not measurable, such as muscle forces, and analyze how those quantities affect motion. In
this study, we characterized how forces from muscles and arm swing affect dynamics of the
body during running over a range of speeds by creating and analyzing muscle-driven
simulations of ten male subjects running at four speeds. We have presented methods for
generating these simulations with experimental data and rigorously examining the simulated
output for accuracy. To enable others to reproduce the results of our simulations and extend
this work, all of the software, models, and data used to create and analyze the simulations
are freely available. We provide open-access to the 120 subject-specific simulations
developed for this study at simtk.org/home/nmbl_running for analysis in OpenSim (Delp et
al., 2007). These simulations, and the associated musculoskeletal models and experimental
data, provide a wealth of information to further examine the biomechanics of human
running.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Musculoskeletal model used to generate simulations of the running gait cycle for ten
subjects at four running speeds: 2.0, 3.0, 4.0, and 5.0 m/s. Snapshots from the simulations of
a representative subject illustrate a complete gait cycle at each speed. The gait cycle starts at
right foot strike and ends at the subsequent right foot strike. Muscle color indicates
simulated activation level from no activation (dark blue) to full activation (bright red).
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Figure 2.
Average simulated muscle activations from computed muscle control (solid black line;
dashed line represents ± 1 standard deviation) and average experimental EMG (gray area)
collected with surface electrodes from ten subjects running at 5.0 m/s. Data represents the
average of three gait cycles for all ten subjects (i.e., a total of 30 gait cycles). See
Supplemental Figures 6-8 for other running speeds. EMG data of each muscle was
normalized for each subject to the maximum processed signal for all data collected for that
subject and the gray area represents the mean ± 1 standard deviation. Simulated activations
are defined to be between 0 (no activation) and 1 (full activation).
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Figure 3.
(A) Joint angles from inverse kinematics for the sagittal hip, knee, and ankle averaged
across subjects over the gait cycle, (B) joint moments from the residual reduction algorithm
(RRA) for the sagittal hip, knee, and ankle averaged across subjects over the gait cycle, and
(C) ground reaction forces averaged across subjects over the stance phase. Each plot
includes data of four running speeds: 2.0, 3.0, 4.0, and 5.0 m/s.
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Figure 4.
Muscle contributions to the body mass center acceleration during stance, across a range of
running speeds. Each ray is the resultant vector of contributions to fore-aft acceleration (i.e.,
propulsion and braking) and vertical acceleration (i.e., support), averaged across ten
subjects. (A) Total mass center acceleration as calculated by dividing the measured ground
reaction force by each subject’s total body mass. (B) The sum of all muscle contributions is
compared to the measured mass center acceleration to illustrate the accuracy of the analysis.
Notice the scale for soleus (C) is greater than any other muscle (D-I), as soleus was the
largest contributor to upward and forward mass center acceleration.
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Figure 5.
Peak contributions to (A) upward acceleration (i.e., support) and (B) fore-aft accelerations
(i.e., braking and propulsion) from muscles and forces due to velocity effects (i.e., Coriolis
and centripetal forces), averaged over ten subjects. Peak contributions to backward
acceleration occurred during early stance while peak forward accelerations occurred during
late stance. Error bars span ± one standard deviation. A repeated measures ANOVA
indicated that speed had a significant effect (* p < 0.01) on muscle contributions mass center
acceleration from soleus, gastrocnemius, vasti, rectus femoris, gluteus maximus, and tibialis
anterior.
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Figure 6.
The angular momentum of the arms (dashed lines) and legs (solid lines) computed about the
vertical axis passing through the body mass center during the running gait cycle of ten
subjects at four running speeds (2.0, 3.0, 4.0, and 5.0 m/s) averaged for ten subjects. The
vertical angular momentum was calculated for all body segments. The arms consisted of the
humerus, ulna, radius and hand segments, and the legs consisted of the femur, tibia, and foot
segments. The vertical angular momentum of the arms was nearly equal and opposite that of
the legs at each running speed.
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