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Abstract

The goal of this study was to identify which muscle activation patterns and gait features best 

predict the metabolic cost of inclined walking. We measured muscle activation patterns, joint 

kinematics and kinetics, and metabolic cost in sixteen subjects during treadmill walking at inclines 

of 0%, 5%, and 10%. Multivariate regression models were developed to predict the net metabolic 

cost from selected groups of the measured variables. A linear regression model including incline 

and the squared integrated electromyographic signals of the soleus and vastus lateralis explained 

96% of the variance in metabolic cost, suggesting that the activation patterns of these large 

muscles have a high predictive value for metabolic cost. A regression model including only the 

peak knee flexion angle during stance phase, peak knee extension moment, peak ankle 

plantarflexion moment, and peak hip flexion moment explained 89% of the variance in metabolic 

cost; this finding indicates that kinematics and kinetics alone can predict metabolic cost during 

incline walking. The ability of these models to predict metabolic cost from muscle activation 

patterns and gait features points the way toward future work aimed at predicting metabolic cost 

when gait is altered by changes in neuromuscular control or the use of an assistive technology.
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INTRODUCTION

Walking up an incline requires adjustments of muscle activations and increases metabolic 

cost, compared to walking on flat terrain (Duggan and Haisman, 1992; Hortobagyi et al., 
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2011; Kang et al., 2002; Pandolf et al., 1977). Pandolf et al. (1977) introduced a model that 

predicts the metabolic cost of walking up an incline from three easily measured variables: 

subject mass, walking velocity, and incline. This model is valuable, but like other models 

(Duggan and Haisman, 1992; van der Walt and Wyndham, 1973), it does not account for 

variations in muscle activations, body composition, or gait features, all of which can 

influence the metabolic cost of walking. As a result, the model described by Pandolf et al. 

(1977) is unlikely to accurately predict metabolic cost for a subject walking at a constant 

velocity and incline, but with muscle activation patterns that are altered as a result of using 

an assistive technology, such as an active orthosis. In such cases, muscle forces and 

activations may change, thereby altering metabolic cost. Models that account for variations 

in muscle activation patterns and gait features may provide more accurate predictions of 

metabolic cost in some cases.

Muscle activation patterns are associated with metabolic cost during walking (Hortobagyi et 

al., 2011). The magnitude and duration of muscle activity increases when subjects walk up 

an incline (Franz and Kram, 2011; Hortobagyi et al., 2011; Lay et al., 2007), suggesting that 

muscle activation patterns may help predict the increase in metabolic cost associated with 

inclined walking. Musculoskeletal simulations often estimate muscle activation patterns 

during walking using an objective function that minimizes the sum of squared simulated 

muscle activations (Anderson and Pandy, 2001; Thelen et al., 2003), which is thought to be 

related to metabolic cost; however, this relationship has not been rigorously tested.

Percent body fat also affects the metabolic cost of inclined walking (Kang et al., 2002) and 

level gait (Browning et al., 2006). Compared to healthy normal weight adults, obese subjects 

and normal weight subjects with a relatively high percent body fat have a higher mass-

specific metabolic cost of walking (Browning et al., 2006; Kang et al., 2002). Percent body 

fat is not generally included predictive models (Duggan and Haisman, 1992; Hall et al., 

2004; Pandolf et al., 1977; van der Walt and Wyndham, 1973), but may improve predictive 

accuracy.

Gait features, such as changing preferred step width (Donelan et al., 2002), eliminating arm 

swing (Umberger, 2008), and walking with flexed knees (Waters and Mulroy, 1999) can 

increase the metabolic cost of level walking. Thus, it seems likely that biomechanical 

changes in gait brought about by walking on an incline may also help to predict the increase 

in metabolic cost of incline walking.

The goal of this study was to determine which muscle activation patterns, physical 

characteristics, and gait features best predict metabolic cost during inclined walking. We 

hypothesized that the sum of squared integrated electromyographic (EMG) signals from 

lower limb muscles would be correlated with net metabolic cost. Further, because incline is 

a strong predictor of metabolic cost (Pandolf et al., 1977) and because certain muscles 

contribute more to metabolic cost than others, we hypothesized that incline and the squared 

integrated EMG signals from a subset of muscles would have better predictive capabilities 

than the sum of squared integrated EMG signals from all muscles. We also hypothesized 

that the predictive accuracy of the model described by Pandolf et al. (1977) could be 

improved by including percent body fat and fat distribution in place of total body mass. 
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Finally, we hypothesized that kinematic and kinetic gait variables could predict metabolic 

cost, independent of incline. In addition to testing these hypotheses, this study provides a 

comprehensive description of the changes in metabolic cost, lower limb joint kinematics and 

kinetics, and muscle activation patterns during inclined walking.

METHODS

Equations placed in the text did not convert into pdf format properly. Certain instances of 

VO2 and VCO2 should have a superscript dot to indicate rate. The VO and VCO did not 

convert, so they appear in the text as “ 2”

Sixteen subjects (10M, 6F; 33±8y; 68±11kg; 1.77±0.09m) provided informed consent to 

participate in this study, according to a protocol approved by the Stanford University 

Institutional Review Board. None of the subjects had current or previous lower limb or back 

injury, pain during walking, or illness within the past four-weeks, and all were able to run 

continuously for 60 minutes.

Body Composition and Metabolic Data

We measured each subject’s body composition using whole body dual-energy x-ray 

absorptiometry (iDXA; GE Healthcare, Waukesha, WI, USA). The scanner and software 

measured total mass, fat mass, and lean tissue mass of the full body, trunk, arms, and lower 

limbs as well as estimated percent android and gynoid fat. Android fat was estimated from 

the lower abdomen region, and gynoid fat was estimated from the upper thigh and gluteal 

region.

Standing metabolic cost (mean±SD: 1.29±0.30W/kg) was obtained by measuring oxygen 

consumption (V̇O2, ml of O2 per second) and carbon dioxide output (VĊO2, ml of CO2 per 

second) for a minimum of five minutes (Quark b2, Cosmed, Italy). Prior to further testing, 

each subject chose a preferred walking velocity (1.29±0.11m/s) on a nearby treadmill that 

allowed the subject to manually choose a walking velocity (model ELG, Woodway Inc., 

Waukesha, WI, USA). Subjects were then familiarized with walking on a split belt 

instrumented treadmill, which was used for the remainder of testing (model TMO8I with 

incline, Bertec Corporation; Columbus, OH, USA). The test consisted of 15 minutes of 

continuous treadmill walking without rest periods: five minutes each at 0%, 5%, and 10% 

inclines. Average V̇O2 and VĊO2 were calculated during the final minute of each five 

minute period after subjects reached steady state (i.e. no significant increase in V̇O2 and 

respiratory exchange ratio <1.0). Gross metabolic cost was estimated during standing and 

walking trials using Brockway’s equation (Brockway, 1987). The net normalized metabolic 

cost was estimated by subtracting standing metabolic cost from walking metabolic cost and 

dividing by body mass.

Spatiotemporal, Kinematic, and Kinetic Data

During each walking trial, whole body motion was tracked using 21 retroreflective markers 

placed on identifiable landmarks and 19 additional markers that aided in segment tracking 

(Cappozzo et al., 1995). Marker data were collected at 100Hz using an eight camera motion 

capture system (Vicon, Oxford Metrics Group, Oxford, UK). Ground reaction forces and 
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moments measured from the treadmill were recorded at 2000Hz and defined using a 

coordinate system orthogonal to the walking surface. Motion, forces, and EMG data were 

collected for ~20s during the final minute of each trial. Five successive left limb gait cycles 

were chosen for analysis (Altman et al., 2012) during which the subject did not cross the 

center line of the split-belt instrumented treadmill. A scaled, 29 degree-of-freedom, 12 

segment model was used to represent the torso, arms, pelvis, and lower extremity of each 

subject (Delp et al., 1990). The pelvis was the base segment and had six degrees-of-freedom, 

the hip was represented as a spherical joint and had three degrees-of-freedom, the knee was 

represented as a one degree-of-freedom joint in which non-sagittal rotations and 

tibiofemoral and patellofemoral translations were computed as a function of the sagittal knee 

angle (Walker et al., 1988), and the ankle and subtalar joints were represented as pin joints 

aligned with anatomical axes (Delp et al., 1990). A functional hip joint center identification 

algorithm (Piazza et al., 2004) was implemented using pelvis and thigh marker motion from 

trials in which the subject circumducted their right and left hips; this was used with a static 

standing calibration trial to define body segment coordinate systems and segment lengths. 

Pelvis position, pelvis orientation, and lower extremity joint angles were computed using a 

global optimization inverse kinematics routine (Lu and O’Connor, 1999). Inverse dynamics 

was conducted using body segment kinematics, anthropometric properties (de Leva, 1996), 

and treadmill forces. Dynamics Pipeline (Motion Analysis Corp, Santa Rosa, CA, USA, 

Delp and Loan, 2000) was used with SD/FAST (Parametric Technology Corporation, 

Waltham, MA, USA) to perform the inverse kinematics and inverse dynamics analyses. 

Joint works were calculated during select phases of the gait cycle by integrating the power 

curves over time. Step length (half the distance traveled between two successive left heel 

contacts), cadence (number of steps taken per minute), and percent stance phase (percentage 

of one gait cycle the left foot was in contact with the ground) were calculated.

Electromyography (EMG)

Muscle activity was monitored using surface electrodes placed on eight left lower limb 

muscles: soleus, medial gastrocnemius, tibialis anterior, medial hamstrings, lateral 

hamstrings, vastus medialis, vastus lateralis, and rectus femoris. EMG signals were recorded 

at 2000Hz using pre-amplified single differential electrodes with 10mm inter-electrode 

distance (DE-2.1, DelSys, Inc, Boston, MA, USA). Data were processed with a 30–500Hz 

sixth order bandpass Butterworth filter and full wave rectified. The Teager-Kaiser energy 

operator was then applied (Li and Aruin, 2005) and data were re-rectified. An average signal 

for each subject and incline was obtained by averaging across the same five gait cycles as 

the motion data. The onset, offset, and duration of muscle activity, relative to a gait cycle, 

was then manually determined (Li and Aruin, 2005). The integrated EMG signals were 

calculated by low-pass filtering the un-averaged data at 30Hz, averaging across five gait 

cycles, and normalizing to the maximum low-pass filtered signal for each muscle during 

level walking.

Statistical Analysis

To test our hypotheses, we built linear regression models to predict the net normalized 

metabolic cost (W/kg) from select measured variables. Simple linear regression was used to 

test our first hypothesis that the sum of squared integrated EMG signals would be correlated 
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with net normalized metabolic cost. To test our hypothesis that incline and the squared 

integrated EMG signals from a subset of muscles would have better predictive capabilities 

than the sum of squared integrated EMG signals from all muscles, a multivariate regression 

model was generated using incline and the squared integrated EMG signals from the eight 

measured muscles as candidate predictor variables. To test our hypothesis that the predictive 

capabilities of the Pandolf model (Pandolf et al., 1977) could be improved by including 

percent body fat and fat distribution in place of total body mass, a multivariate regression 

model was generated that included walking velocity, incline, percent body fat, and a 

measure of fat mass distribution obtained from the iDXA. To compare the accuracy of this 

model to the one described by Pandolf et al. (1977), we created a comparative model using 

the same predictor variables as the Pandolf model: subject mass, walking velocity, and 

incline. A final multivariate regression model was created to test the hypothesis that 

kinematic and kinetic gait variables could predict metabolic cost, independent of incline; 

variables included for consideration in this model were: spatiotemporal, kinematic, and 

kinetic measures. All of the regression models were developed using the following general 

form:

Eq. 1

where Y is the net normalized metabolic cost, β are the linear weighting coefficients, and x 

are the standardized predictive variables (non-standardized values reported in Tables 2 and 

3). All data considered for the models were standardized by subtracting the mean and 

dividing by the standard deviation. Akaike’s Information Criterion (AIC) was first used to 

determine the best combination of variables to be included in each model (Akaike, 1974). 

AIC represents the goodness of fit of a regression model by accounting for the interaction 

between model accuracy and complexity. Pearson’s correlation was then used to check for 

multicolinearity among the AIC chosen variables. Finally, stepwise forward linear 

regression was used to determine the final set of variables to be included in each model.

Repeated measures ANOVA (STATISTICA 6.0, StatSoft, Inc., Rulsa, OK, USA) was used 

to test the effect of incline on the following gait features: step length, cadence, percent 

stance phase, integrated muscle activities, muscle activation timing, and peak lower 

extremity joint kinematics and kinetics. Post-hoc analyses of main effects were investigated 

using Tukey’s Honestly Significant Difference (HSD). Significance for all analyses was set 

at p<0.05.

RESULTS

Metabolic Cost

The net normalized metabolic cost of level walking was 3.3±0.6W/kg. Metabolic cost 

increased 52±17% above level walking at 5% incline and increased 113±32% above level 

walking at 10% incline.
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Muscle Activity

The sum of squared integrated EMG signals was correlated with the normalized net 

metabolic cost (R2=0.40). A linear regression model containing incline and the squared 

integrated EMG signals from the soleus and vastus lateralis resulted in an R2 value of 0.96 

(Table 1).

Integrated EMG activity of all but the tibialis anterior increased with incline (Fig. 1) 

(p<0.05). The timing of muscle activity was also affected by incline for all muscles except 

the tibialis anterior and rectus femoris (Fig. 2). As incline increased, the onset of soleus 

(p=0.04) and gastrocnemius (p<0.01) activity occurred later in stance phase. The 

gastrocnemius remained active for a shorter duration at incline, compared to level walking 

(p<0.01). The duration of activity increased for both the medial (p<0.01) and lateral 

(p=0.01) hamstrings, primarily as a result of these muscles turning off at a later time 

(p<0.01). Although the duration of vastus medialis and lateralis activity did not significantly 

change across inclines, the onset and offset of activity occurred later in the gait cycle 

(p<0.05).

Body Composition

A regression model that included incline, walking velocity, percent body fat, and percent 

gynoid fat explained 85% of the variance in metabolic cost; this was only marginally better 

than the model that included the same variables as the Pandolf model: incline, walking 

velocity, and body mass (R2=0.84) (Table 1). Mean body composition measures from the 

iDXA scan were: body fat, 16.9±6.4% (range, 7.2–32.0%); android fat 15.1±6.5% (range, 

4.0–25.3%); gynoid fat 20.6±8.7% (range, 7.3–43.9%); legs/total fat mass ratio, 0.38±0.07 

(range, 0.25–0.49); trunk/total fat mass ratio, 0.43±0.09 (range, 0.30–0.59); and the (arms

+legs)/trunk fat mass ratio, 1.20±0.40 (range, 0.56–1.93).

Gait Features

A regression model using only kinematic and kinetic variables resulted in an R2 value of 

0.89. Predictive variables in this model included two features from the first half of stance 

phase (peak knee flexion angle and peak knee extension moment) and two features from the 

second half of stance phase (peak ankle plantarflexion moment and peak hip flexion 

moment). The only spatiotemporal measure altered by incline was the duration of stance 

phase, which increased with incline (p=0.03) (Table 2). Peak hip flexion angle, peak stance 

phase knee flexion angle, and peak ankle dorsiflexion angle all increased with incline (Fig. 

3, Table 3) (p<0.01). With the exception of the hip moment, power, and work associated 

with hip power generation during late stance and early swing phase, all peak joint moments, 

powers, and work were affected by incline (p<0.01) (Fig. 3, Table 3).

DISCUSSION

The goal of this study was to determine which muscle activation patterns, physical 

characteristics, and gait features best predict metabolic cost during inclined walking. In 

achieving this goal, we provide a comprehensive description of lower extremity kinematics, 

kinetics, and muscle activation patterns during treadmill walking at inclines of 0%, 5%, and 
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10%. In support of our first hypothesis, the sum of squared integrated muscle activations 

from the eight lower extremity muscles measured in this study was correlated with net 

metabolic cost (R2=0.40). The sum of squared simulated muscle activations is a commonly 

used optimization function in musculoskeletal simulations to predict muscle activity during 

walking, and is thought be related to metabolic cost (Anderson and Pandy, 2001; Thelen et 

al., 2003). Our findings support this idea.

In support of our second hypothesis, a regression model containing only incline and the 

squared integrated EMG signals of soleus and vastus lateralis explained 96% of the variance 

in metabolic cost (Table 1). The improved predictive capability of this model likely arises 

for two reasons. First, incline is a strong predictor of metabolic cost (Pandolf et al., 1977) 

and was included in this model. Second, individual muscles contribute differently to 

metabolic cost. The soleus and vasti are the muscles with the two largest physiological 

cross-sectional areas in the lower limb (Arnold et al., 2010; Ward et al., 2009) and their 

activations increase significantly with incline (Fig. 1); thus, they likely contribute 

substantially to changes in metabolic cost with incline. The ability of muscle activations to 

predict metabolic cost may provide a rationale for predicting the metabolic cost of incline 

walking from muscle activation patterns derived from musculoskeletal simulations.

A commonly used model to predict metabolic cost during inclined walking does so using 

only subject mass, walking velocity, and incline (Pandolf et al., 1977). We hypothesized that 

the predictive capabilities of this model could be improved by including percent body fat 

and fat distribution in place of total body mass. Our analysis did not support this hypothesis. 

A linear regression model containing incline, walking velocity, percent body fat, and percent 

gynoid fat resulted in an R2 value of 0.85, which is similar to the model containing body 

mass, incline, and walking velocity (R2=0.84). We recruited subjects with a range of fat 

distribution (e.g. percent gynoid fat range, 4.0–25.3%), but all of our subjects were 

physically fit. A model including mass distribution may be better applied to a group of 

subjects with more diverse body composition.

We hypothesized that kinematic and kinetic measurements alone could predict metabolic 

cost, independent of incline. Indeed, 89% of the variance in metabolic cost was explained 

using two features from the first half of stance phase (peak knee flexion angle, peak knee 

extension moment) and two features from the second half of stance phase (peak ankle 

plantarflexion moment, peak hip flexion moment). Because biomechanical gait patterns are 

commonly measured, a model such as this may be valuable when metabolic or EMG 

measurements are not available.

During the first half of stance phase, incline necessitated an increase in peak hip, knee, and 

ankle flexion angles (Fig. 3), which has been observed by others (Lay et al., 2006; McIntosh 

et al., 2006). The largest change in gait dynamics with incline was the stance phase hip 

power generation, which increased an average of 163% between 0% and 10% incline (Fig. 

3). During this time, muscle activity from gluteus maximus, a powerful hip extensor, also 

increases (Franz and Kram, 2011; Lay et al., 2007; McIntosh et al., 2006). Although we did 

not measure gluteus maximus activity, we observed increased activity in the hamstrings, 
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rectus femoris, and vasti (Fig. 1) along with a longer activation in the bi-articular hamstrings 

and vasti (Fig. 2).

The second half of stance phase was characterized by an increase in plantarflexor power 

generation with incline (Fig. 3); this is consistent with others (DeVita et al., 2007; Lay et al., 

2006). Similar to Litchwark and Wilson (2006) and Wall-Scheffler et al. (2010), we also 

observed an increase in gastrocnemius activity with incline (Fig. 1).

Each subject in our study walked at their preferred level walking velocity at all inclines. 

This enabled us to evaluate changes in gait features across incline irrespective of speed but 

made comparisons with previous studies difficult, because some studies allowed subjects to 

walk at different preferred speeds at each incline (i.e., slower up incline than level walking) 

(Kawamura et al., 1991; McIntosh et al., 2006; Sun et al., 1996).

Our goal was to determine which measured variables best predict metabolic cost, not to 

determine the direct relationship between each measured variable and metabolic cost. 

Developing regression models this way yields beta coefficients that are not intuitive, such as 

the negative coefficient associated with vastus lateralis activity (Table 1). Although we 

ensured that no multicolinearity existed between the predictive variables included in each 

model, numerous correlations did exist between the predictor variables and the remaining 

variables not included in the models. This yielded beta coefficients that may not represent a 

direct relationship with net metabolic cost.

The regression models presented here have other limitations. For example, the model that 

used EMG to predict metabolic cost was developed using activation patterns from only eight 

muscles. Given that the peak hip extension moment and hip power generation increased 

significantly with incline (Fig. 3, Table 4), it is possible that including gluteus maximus 

activity might have improved the predictions of metabolic cost from EMG. Further, the 

models using EMG cannot explicitly account for factors that influence muscle energetics, 

such as the volume of muscle activated, fiber type, and contraction velocity.

This study provides a description of muscle activation patterns, joint kinematics and 

kinetics, and metabolic cost during inclined walking. Regression models using these data 

predict net metabolic cost well, suggesting that muscle activities and biomechanical gait 

patterns may predict metabolic cost during other gait patterns of healthy adults walking with 

flexed knees (e.g. crouch), while carrying loads, or at various speeds. This motivates future 

studies to predict the metabolic cost of walking when gait is altered by changes in 

neuromuscular control or while using an assistive technology.
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Figure 1. 
Ensemble averaged low-pass filtered muscle activity averaged across the same five gait 

cycles as the motion data. The signals from each subject and muscle were normalized to the 

maximum low-pass filtered signal of that muscle during level walking.
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Figure 2. 
Mean and standard deviation of muscle activation timing averaged across the same five gait 

cycles as the motion data. Thick bars represent when each muscle is active, and thin bars 

represent the standard deviation across all subjects tested.
a0≠5%, b5≠10%, c0≠10%
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Figure 3. 
Ensemble averaged lower extremity sagittal plane joint angles, moments and powers 

averaged across five gait cycles for walking on a level surface and up inclines of 5% and 

10%.
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Table 1

Standardized multivariate linear regression was used to investigate the relationship between three groups of 

measured variables and the net metabolic cost normalized to body mass.

β t-value p-value

1. Squared Integrated Electromyographic Signals (iEMG2), R2 = 0.96

Incline 0.88 9.34 <0.01

Soleus iEMG2 0.37 4.94 <0.01

Vastus Lateralis iEMG2 −0.20 −2.26 0.05

2. Physical and Physiological Characteristics, R2 = 0.85

Incline 1.78 15.41 <0.01

Walking Velocity 0.05 0.51 0.61

Percent Body Fat −0.29 −2.04 0.03

Percent Gynoid Fat −0.29 2.20 0.04

3. Kinematic and Kinetic Variables, R2 = 0.89

Peak Knee Flexion – Stance 0.72 6.23 <0.01

Peak Knee Extension Moment 1.10 10.60 <0.01

Peak Ankle Plantarflexion Moment −0.36 −3.00 <0.01

Peak Hip Flexion Moment 0.18 1.90 0.07
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Table 2

Mean (standard deviation) spatiotemporal measures and peak ground reaction forces, normal to the walking 

surface.

0% 5% 10% p-value

Spatiotemporal

Step Length (normalized to height) 0.40 (0.03) 0.40 (0.03) 0.40 (0.03) 0.12

Cadence (steps/min) 110 (6) 109 (6) 110 (6) 0.15

Stance Phase (%) 59 (2) 61 (3) 61 (4) 0.03c

Peak Normal Force (normalized to body weight)

Loading 1.16 (0.06) 1.08 (0.09) 0.99 (0.21) 0.96

Pushoff 1.08 (0.05) 1.10 (0.10) 1.05 (0.23) 0.20

a
0≠5%,

b
5≠10%,

c
0≠10%
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Table 3

Mean (standard deviation) peak joint kinematics and kinetics for the three inclines tested.

0% 5% 10% p-value

Peak Joint Angles

Hip

Flexion 29 (6) 35 (5) 43 (6) <0.01a,b,c

Extension −15 (9) −15 (9) −15 (9) 0.58

Knee

Flexion - Stance 21 (6) 25 (7) 34 (8) <0.01a,b,c

Flexion - Swing 69 (7) 67 (7) 68 (7) <0.01a,c

Ankle

Dorsiflexion 10 (7) 11 (7) 14 (8) <0.01b,c

Plantarflexion −14 (7) −15 (8) −15 (7) 0.67

Peak Joint Moments (Nm/kg)

Hip

Flexion 0.58 (0.18) 0.49 (0.28) 0.34 (0.50) 0.08

Extension −0.93 (0.23) −1.22 (0.25) −1.70 (0.32) <0.01a,b,c

Knee

Flexion 0.44 (0.19) 0.68 (0.21) 1.03 (0.24) <0.01a,b,c

Extension −0.94 (0.24) −0.67 (0.27) −0.36 (0.25) <0.01a,b,c

Ankle

Plantarflexion −1.62 (0.17) −1.87 (0.14) −2.16 (0.29) <0.01a,b,c

Peak Joint Powers (W/kg)

Hip

Generation (1st peak) 1.20 (0.36) 1.78 (0.53) 3.15 (0.91) <0.01a,b,c

Absorption −0.49 (0.23) −0.35 (0.25) −0.02 (0.28) <0.01b,c

Generation (2nd peak) 0.94 (0.29) 1.09 (0.34) 1.06 (0.37) 0.20

Ankle

Generation 2.00 (0.51) 2.52 (0.49) 3.35 (0.75) <0.01b,c

Joint Works (J/kg)

Hip

Positive (1st peak) 0.20 (0.06) 0.37 (0.10) 0.73 (0.19) <0.01a,b,c

Negative −0.06 (0.03) −0.03 (0.03) 0.00 (0.01) <0.01a,b,c

Positive (2nd peak) 0.13 (0.03) 0.15 (0.04) 0.16 (0.05) 0.06

Ankle

Positive 0.21 (0.06) 0.28 (0.08) 0.38 (0.11) <0.01a,b,c
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a
0≠5%,

b
5≠10%,

c
0≠10%
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